Search results for "Downregulation and upregulation"

showing 10 items of 459 documents

Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture.

2017

Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferati…

0106 biological sciences0301 basic medicineTFs transcription factorsOverexpressionBiologíaBiFC bimolecular fluorescence complementationClinical BiochemistryCell Culture TechniquesTobacco BY-2 cells01 natural sciencesBiochemistryTBY-2 tobacco bright yellow-2DTT 14-dithiothreitolBimolecular fluorescence complementationThioredoxinsGene Expression Regulation PlantTrx thioredoxinlcsh:QH301-705.5GFP green fluorescent proteinlcsh:R5-920biologyProliferating cell nuclear antigen (PCNA)Cell cycleGlutathione3. Good healthCell biologyMitochondriaNTR NADPH thioredoxin reductaseProtein TransportDEM diethyl maleateRT-qPCR Reverse transcription quantitative polymerase chain reactionThioredoxinlcsh:Medicine (General)Oxidation-ReductionAMS 4-acetamido-4-maleimidylstilbene-22-disulfonic acidResearch PaperPCNA proliferating cell nuclear antigenOex overexpressingCell cycleNucleusThioredoxin o103 medical and health sciencesROS reactive oxygen speciesDownregulation and upregulationProliferating Cell Nuclear AntigenTobaccoDAPI 46-diamidine-2-phenylindolmCBM monochlorobimaneCellular compartmentCell NucleusCell growthOrganic ChemistryBotánicaPeasMolecular biologyYFP yellow fluorescent proteinProliferating cell nuclear antigenTBS Tris-buffered salineOD optical density030104 developmental biologylcsh:Biology (General)Cell cultureRNA reactive nitrogen speciesbiology.proteinPrx peroxiredoxinBSA bovine serum albumin010606 plant biology & botanyRedox biology
researchProduct

AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7

2005

AbstractIn plant chloroplasts two superoxide dismutase (SOD) activities occur, FeSOD and Cu/ZnSOD, with reciprocal regulation in response to copper availability. This system presents a unique model to study the regulation of metal-cofactor delivery to an organelle. The Arabidopsis thaliana gene AtCCS encodes a functional homolog to yeast Ccs1p/Lys7p, a copper chaperone for SOD. The AtCCS protein was localized to chloroplasts where it may supply copper to the stromal Cu/ZnSOD. AtCCS mRNA expression levels are upregulated in response to Cu-feeding and senescence. We propose that AtCCS expression is regulated to allow the most optimal use of Cu for photosynthesis.

0106 biological sciencesCu/Zn superoxide dismutaseChloroplastsSaccharomyces cerevisiae ProteinsMolecular Sequence DataArabidopsisBiophysicsSaccharomyces cerevisiaeMetallo chaperoneChloroplastModels Biological01 natural sciencesBiochemistryGreen fluorescent proteinSuperoxide dismutase03 medical and health sciencesDownregulation and upregulationGene Expression Regulation PlantStructural BiologyOrganelleGeneticsAmino Acid SequenceRNA MessengerMolecular BiologyGene030304 developmental biology0303 health sciencesbiologyArabidopsis ProteinsGene Expression ProfilingGenetic Complementation TestCell BiologyYeastChloroplastProtein TransportBiochemistryChaperone (protein)Mutationbiology.proteinSequence AlignmentCopperMolecular Chaperones010606 plant biology & botanyFEBS Letters
researchProduct

Experimental increase in fecundity causes upregulation of fecundity and body maintenance genes in the fat body of ant queens.

2021

In most organisms, fecundity and longevity are negatively associated and the molecular regulation of these two life-history traits is highly interconnected. In addition, nutrient intake often has opposing effects on lifespan and reproduction. In contrast to solitary insects, the main reproductive individual of social hymenopterans, the queen, is also the most long-lived. During development, queen larvae are well-nourished, but we are only beginning to understand the impact of nutrition on the queens' adult life and the molecular regulation and connectivity of fecundity and longevity. Here, we used two experimental manipulations to alter queen fecundity in the ant Temnothorax rugatulus and …

0106 biological sciencesFat bodymedia_common.quotation_subjectFat BodyLongevityZoologyFertilityBiology010603 evolutionary biology01 natural sciences03 medical and health sciencesDownregulation and upregulationNegatively associatedAnimalsGene030304 developmental biologymedia_common0303 health sciencesEvolutionary BiologyAntsReproductionLongevityFecundityAgricultural and Biological Sciences (miscellaneous)ANTUp-RegulationFertilityGeneral Agricultural and Biological SciencesBiology letters
researchProduct

Nitric oxide and glutathione impact the expression of iron uptake- and iron transport-related genes as well as the content of metals in A. thaliana p…

2012

International audience; Mounting evidence indicate that nitric oxide (NO) acts as a signaling molecule mediating iron deficiency responses through the upregulation of the expression of iron uptake-related genes. Accordingly, NO donors such as nitrosoglutathione (GSNO) were reported to improve the fitness of plants grown under iron deficiency. Here, we showed that glutathione, a by-product of GSNO, triggered the upregulation of the expression of iron uptake- and transport-related gene and an increase of iron concentration in Arabidopsis thaliana seedlings facing iron deficiency. Furthermore, we provided evidence that under iron deficiency, NO released by GSNO did not improve the root iron co…

0106 biological sciencesmineral contentShort CommunicationIron[SDV]Life Sciences [q-bio]ArabidopsisPlant ScienceGenes PlantNitric Oxide01 natural sciencesPlant RootsNitric oxideS-Nitrosoglutathione03 medical and health scienceschemistry.chemical_compoundDownregulation and upregulationGene Expression Regulation PlantArabidopsismineral deficienciesmedicineArabidopsis thalianaglutathione030304 developmental biologymineral uptakeRegulation of gene expression0303 health sciencesManganesebiologyArabidopsis Proteinsarabidopsis thalianaBiological TransportIron deficiencyGlutathioneIron Deficienciesbiology.organism_classificationmedicine.diseaseZincchemistryBiochemistryS-Nitrosoglutathione[SDE]Environmental Sciencesgene expressionCopper010606 plant biology & botany
researchProduct

γ-Glutamyl cysteine suppresses TNF-α up-regulation via protein phosphatases in acute pancreatitis

2016

0301 basic medicine03 medical and health sciences030109 nutrition & dieteticsBiochemistryDownregulation and upregulationChemistryPhysiology (medical)PhosphatasemedicineAcute pancreatitismedicine.diseaseBiochemistryCysteineFree Radical Biology and Medicine
researchProduct

Echovirus 1 internalization negatively regulates epidermal growth factor receptor downregulation

2016

We have demonstrated previously that the human picornavirus Echovirus 1 (EV1) triggers an infectious internalization pathway that follows closely, but seems to stay separate, from the epidermal growth factor receptor (EGFR) pathway triggered by epidermal growth factor (EGF). Here, we confirmed by using live and confocal microscopy that EGFR and EV1 vesicles are following intimately each other but are distinct entities with different degradation kinetics. We show here that despite being sorted to different pathways and located in distinct endosomes, EV1 inhibits EGFR downregulation. Simultaneous treatment with EV1 and EGF led to an accumulation of EGFR in cytoplasmic endosomes, which was evi…

0301 basic medicine030102 biochemistry & molecular biologybiologyEndosomemedia_common.quotation_subjectImmunologyMicrobiologyClathrinCell biology03 medical and health sciences030104 developmental biologyDownregulation and upregulationEpidermal growth factorVirologybiology.proteinEpidermal growth factor receptorInternalizationA431 cellsProtein kinase Cmedia_commonCellular Microbiology
researchProduct

Constitutive activation of MexT by amino acid substitutions results in MexEF-OprN overproduction in clinical isolates of Pseudomonas aeruginosa

2018

ABSTRACT When overproduced, the multidrug efflux system MexEF-OprN increases the resistance of Pseudomonas aeruginosa to fluoroquinolones, chloramphenicol, and trimethoprim. In this work, we demonstrate that gain-of-function mutations in the regulatory gene mexT result in oligomerization of the LysR regulator MexT, constitutive upregulation of the efflux pump, and increased resistance in clinical isolates.

0301 basic medicine030106 microbiologyMicrobial Sensitivity Tests[ SDV.MP.BAC ] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriologymedicine.disease_causeMicrobiology03 medical and health sciencesAntibiotic resistanceDownregulation and upregulationMechanisms of Resistance[ SDV.MP ] Life Sciences [q-bio]/Microbiology and ParasitologyDrug Resistance BacterialmedicinePharmacology (medical)OverproductionComputingMilieux_MISCELLANEOUSRegulator genePharmacologychemistry.chemical_classificationChemistryPseudomonas aeruginosaChloramphenicolGene Expression Regulation Bacterial[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology3. Good healthAmino acidAnti-Bacterial AgentsInfectious Diseases[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyAmino Acid SubstitutionMutationPseudomonas aeruginosaEffluxmedicine.drug
researchProduct

Injury-activated glial cells promote wound healing of the adult skin in mice

2018

Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously…

0301 basic medicine10017 Institute of AnatomyGeneral Physics and AstronomyTransforming Growth Factor betaMedicinelcsh:ScienceMyofibroblastsCells CulturedSkinMice KnockoutMultidisciplinaryintegumentary systemSOXE Transcription FactorsQCell CycleCell Differentiation3100 General Physics and AstronomyCell biologyMice Inbred DBACutaneous woundMyofibroblastNeurogliaSignal TransductionMice 129 StrainScienceMice Transgenic610 Medicine & health1600 General ChemistryGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesParacrine signallingDownregulation and upregulationIn vivoFate mapping1300 General Biochemistry Genetics and Molecular BiologyAnimalsHumansEpithelial proliferationWound Healingbusiness.industryGene Expression ProfilingGeneral ChemistryMice Inbred C57BL030104 developmental biology10032 Clinic for Oncology and Hematology570 Life sciences; biologylcsh:QWound healingbusiness
researchProduct

Downregulation of thioredoxin-1-dependent CD95 S-nitrosation by Sorafenib reduces liver cancer

2020

Hepatocellular carcinoma (HCC) represents 80% of the primary hepatic neoplasms. It is the sixth most frequent neoplasm, the fourth cause of cancer-related death, and 7% of registered malignancies. Sorafenib is the first line molecular targeted therapy for patients in advanced stage of HCC. The present study shows that Sorafenib exerts free radical scavenging properties associated with the downregulation of nuclear factor E2-related factor 2 (Nrf2)-regulated thioredoxin 1 (Trx1) expression in liver cancer cells. The experimental downregulation and/or overexpression strategies showed that Trx1 induced activation of nitric oxide synthase (NOS) type 3 (NOS3) and S-nitrosation (SNO) of CD95 rece…

0301 basic medicine:Anatomy::Cells::Cells Cultured::Cell Line::Cell Line Tumor [Medical Subject Headings]Factor 2 relacionado con NF-E2Regulación hacia abajomedicine.medical_treatment[SDV]Life Sciences [q-bio]Clinical Biochemistry:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Thioredoxins [Medical Subject Headings]ApoptosisBiochemistry:Phenomena and Processes::Chemical Phenomena::Biochemical Phenomena::Biochemical Processes::Nitrosation [Medical Subject Headings]Targeted therapyNeoplasias hepáticas:Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans [Medical Subject Headings]Mice0302 clinical medicineThioredoxins:Organisms::Eukaryota::Animals [Medical Subject Headings]lcsh:QH301-705.5Cell proliferationlcsh:R5-920GSNORChemistry:Diseases::Neoplasms::Neoplasms by Site::Digestive System Neoplasms::Liver Neoplasms [Medical Subject Headings]Liver NeoplasmsSorafenibFas receptor3. Good healthHepatocellular carcinomaCD95Liver cancerlcsh:Medicine (General)NOS3Liver cancerCarcinoma hepatocelularResearch Papermedicine.drugSorafenibHepatocarcinomaProliferación celularCarcinoma HepatocellularNitrosationDown-RegulationMice Nude[SDV.CAN]Life Sciences [q-bio]/CancerAntineoplastic AgentsNrf203 medical and health sciencesDownregulation and upregulationCell Line TumormedicineAnimalsHumansS-NitrosoglutatiónTiorredoxinas:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Growth Processes::Cell Proliferation [Medical Subject Headings]:Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Rodentia::Muridae::Murinae::Mice [Medical Subject Headings]:Diseases::Neoplasms::Neoplasms by Site::Digestive System Neoplasms::Liver Neoplasms::Carcinoma Hepatocellular [Medical Subject Headings]:Phenomena and Processes::Chemical Phenomena::Biochemical Phenomena::Biochemical Processes::Down-Regulation [Medical Subject Headings]Cell growthPhenylurea CompoundsOrganic Chemistry:Chemicals and Drugs::Chemical Actions and Uses::Pharmacologic Actions::Therapeutic Uses::Antineoplastic Agents [Medical Subject Headings][SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology:Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Rodentia::Muridae::Murinae::Mice::Mice Mutant Strains::Mice Nude [Medical Subject Headings]medicine.diseasedigestive system diseases030104 developmental biologylcsh:Biology (General)ApoptosisDownregulation:Chemicals and Drugs::Organic Chemicals::Hydrocarbons::Hydrocarbons Cyclic::Hydrocarbons Aromatic::Benzene Derivatives::Phenylurea Compounds [Medical Subject Headings][SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologyCancer researchÓxido nítrico sintasa de tipo III030217 neurology & neurosurgery
researchProduct

Rosmarinic Acid Activates AMPK to Inhibit Metastasis of Colorectal Cancer

2018

Rosmarinic acid (RA) has been used as an anti-inflammatory, anti-diabetic, and anti-cancer agent. Although RA has also been shown to exert an anti-metastatic effect, the mechanism of this effect has not been reported to be associated with AMP-activated protein kinase (AMPK). The aim of this study was to elucidate whether RA could inhibit the metastatic properties of colorectal cancer (CRC) cells via the phosphorylation of AMPK. RA inhibited the proliferation of CRC cells through the induction of cell cycle arrest and apoptosis. In several metastatic phenotypes of CRC cells, RA regulated epithelial–mesenchymal transition (EMT) through the upregulation of an epithelial marker, E-cadherin, and…

0301 basic medicineAMPKrosmarinic acidCell cycle checkpointmatrix metalloproteinaseVimentincolorectal cancerMetastasis03 medical and health sciences0302 clinical medicineDownregulation and upregulationmedicinemetastasisPharmacology (medical)Protein kinase AOriginal ResearchPharmacologybiologyChemistryCell adhesion moleculelcsh:RM1-950EMTAMPKmedicine.disease030104 developmental biologylcsh:Therapeutics. PharmacologyApoptosis030220 oncology & carcinogenesisCancer researchbiology.proteinFrontiers in Pharmacology
researchProduct